Combining Statistics and Semantics for Word and Document Clustering
نویسندگان
چکیده
A new approach for constructing pseudo-keywords, referred to as Sense Units, is proposed. Sense Units are obtained by a word clustering process, where the underlying similarity reflects both statistical and semantic properties, respectively detected through Latent Semantic Analysis and WordNet. Sense Units are used to recode documents and are evaluated from the performance increase they permit in classification tasks. Experimental results show that accounting for semantic information in fact decreases the performances compared to LSI standalone. The main weakenesses of the current hybrid scheme are discussed and several tracks for improvement are sketched.
منابع مشابه
Hierarchical Fuzzy Clustering Semantics (HFCS) in Web Document for Discovering Latent Semantics
This paper discusses about the future of the World Wide Web development, called Semantic Web. Undoubtedly, Web service is one of the most important services on the Internet, which has had the greatest impact on the generalization of the Internet in human societies. Internet penetration has been an effective factor in growth of the volume of information on the Web. The massive growth of informat...
متن کاملیک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجرههای همپوشان
A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملTwo-way Poisson mixture models for simultaneous document classification and word clustering
An approach to simultaneous document classification and word clustering is developed using a two-way mixture model of Poisson distributions. Each document is represented by a vector with each dimension specifying the number of occurrences of a particular word in the document in question. As a collection of documents across several classes usually makes use of a large number of words, the docume...
متن کاملSemantic Topic Models: Combining Word Distributional Statistics and Dictionary Definitions
In this paper, we propose a novel topic model based on incorporating dictionary definitions. Traditional topic models treat words as surface strings without assuming predefined knowledge about word meaning. They infer topics only by observing surface word co-occurrence. However, the co-occurred words may not be semantically related in a manner that is relevant for topic coherence. Exploiting di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001